Fatigue Analysis and Experimental Research for Thin-Walled Plates under Thermoacoustic Loading in Traveling Wave Tube
1.Key Laboratory of Advanced Measurement and Test Technique for Aviation Propulsion Systems,Liaoning Province,Institute of Aircraft Engine,Shenyang Aerospace University,Shenyang 110136,China;2.School of Energy and Power Engineering,Beihang University,Beijing 100191,China
[1] Lee J. Large-Amplitude Plate Vibration in an Elevated Thermal Environment[R]. WL-TR-92-3049.
[2] Lee J. Displacement and Strain Histograms of Thermally Buckled Composite Plates in Random Vibration[C]. Salt Lake City: 37th Structures, Structural Dynamics, and Materials Conference, 1996.
[3] Lee J. Displacement and Strain Statistics of Thermally Buckled Plates[C]. St. Louis: 40th Structures, Structural Dynamics, and Materials Conference and Exhibit, 1999.
[4] Mei C, Wentz K R. Analytical and Experimental Nonlinear Response of Rectangular Panels to Acoustic Excitation[C]. New Orleans: 23rd Structural Dynamics and Materials Conference, 1982.
[5] Mei C, Dhainaut J M, Duan B, et al. Nonlinear Random Response of Composite Panels in an Elevated Thermal Environment[R]. AFRL-VA-WP-TR-2000-3049.
[6] Locke J, Mei C. Effects of Nonlinear Damping on Random Response of Beams to Acoustic Loading[C]. Mobile:30th Structural Dynamics and Materials Conference, 1989.
[7] Chen R X, Mei C. Finite Element Nonlinear Random Response of Beams to Acoustic and Thermal Loads Applied Simultaneously[C]. La Jolla:34th Structural Dynamics and Materials Conference, 1993.
[8] Mei C, Chen R R. Finite Element Nonlinear Random Response of Composite Panels of Arbitrary Shape to Acoustic and Thermal Loads[R]. WL-TR-1997-3085.
[9] White R G . Developments in the Acoustic Fatigue Design Process for Composite Aircraft Structures[J]. Composite Structures, 1990, 16(1): 171-192.
[10] Schneider C W. Acoustic Fatigue of Aircraft Structures at Elevated Temperatures [R]. AFFDL-TR-73-155.
[11] Maekawa S. On the Sonic Fatigue Life Estimation of Skin Structures at Room and Elevated Temperatures[J]. Journal of Sound and Vibration, 1982, 80(1): 41-59.
[12] Jacobs J H, Gruensfelder C, Hedgecock C E. Thermal Acoustic Fatigue of Ceramic Matrix Composite Materials [R]. AIAA93-1319.
[13] Arnold Rocky R, Vaicaitis Rimas R. Nonlinear Response and Fatigue of Surface Panels by the Time Domain Monte Carlo Approach [R]. WRDC-TR-90-3081.
[14] Przekop A, Rizzi S A, Sweitzer K A. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response[J]. International Journal of Fatigue, 2008, 30(9): 1579-1598.
[15] 李久楷, 刘永杰, 王清远, 等. TC17钛合金高温超高周疲劳实验[J]. 航空动力学报, 2014, 29(7):1567-1573.
[16] 马艳红, 张大义, 洪 杰, 等. 气流激励下叶片的高周疲劳概率寿命预估[J]. 推进技术, 2009, 30(4):462-467.
[17] Sha Y D, Wei J, Gao Z J. Nonlinear Characteristics of Thin-Walled Structures under Thermo-Acoustic Loadings[J]. Acta Aeronauticaet Astronautica Sinica, 2013, 34(6): 1336-1346.
[18] 沙云东, 胡翼飞, 胡增辉. 薄壁结构高温随机振动疲劳分析方法有效性验证[J]. 推进技术, 2018, 39(6): 1386-1395. (SHA Yun-dong, HU Yi-fei, HU Zeng-hui. Random Vibration Fatigue Analysis Method Valid Verification of Thin-Walled Structure under High Temperature Environment[J]. Journal of Propulsion Technology, 2018, 39(6): 1386-1395.)
[19] 沙云东, 魏 静, 高志军. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6):1336-1346.
[20] Sha Y D, Gao Z J, Xu F, et al. Influence of Thermal Loading on the Dynamic Response of Thin-Walled Structure under Thermo-Acoustic Loading[J]. Advanced Engineering Forum, 2011, 2(3): 876-881.